from heapq import heapify
class Solution:
def maxSlidingWindow(self, nums: List[int], k: int) -> List[int]:
for i, n in enumerate(nums):
nums[i] = -n
l, r = 0, k - 1
heap = nums[0:r+1]
heapify(heap)
res = []
res.append(-heap[0])
while r < len(nums) - 1:
r += 1
heap[heap.index(nums[l])] = nums[r]
heapify(heap)
l += 1
res.append(-heap[0])
return res
JavaScript Code
/**
* @param {number[]} nums
* @param {number} k
* @return {number[]}
*/
var maxSlidingWindow = function (nums, k) {
if (!nums || !nums.length) return [];
const heap = new MaxHeap(nums.slice(0, k));
const res = [];
res.push(heap.peek());
let l = 0,
r = k - 1;
while (r < nums.length - 1) {
r++;
heap.replace(nums[l], nums[r]);
l++;
res.push(heap.peek());
}
return res;
};
// *******************************************
class Heap {
constructor(list = [], comparator) {
this.list = list;
this.comparator = comparator;
this.init();
}
init() {
const size = this.size();
for (let i = Math.floor(size / 2) - 1; i >= 0; i--) {
this.heapify(this.list, size, i);
}
}
insert(n) {
this.list.push(n);
const size = this.size();
for (let i = Math.floor(size / 2) - 1; i >= 0; i--) {
this.heapify(this.list, size, i);
}
}
peek() {
return this.list[0];
}
pop() {
const last = this.list.pop();
if (this.size() === 0) return last;
const returnItem = this.list[0];
this.list[0] = last;
this.heapify(this.list, this.size(), 0);
return returnItem;
}
replace(replaced, target) {
const index = this.list.findIndex(n => n === replaced);
if (index > -1) {
this.list[index] = target;
const size = this.size();
for (let i = Math.floor(size / 2) - 1; i >= 0; i--) {
this.heapify(this.list, size, i);
}
return true;
}
return false;
}
size() {
return this.list.length;
}
}
class MaxHeap extends Heap {
constructor(list, comparator) {
if (typeof comparator != 'function') {
comparator = function comparator(inserted, compared) {
return inserted < compared;
};
}
super(list, comparator);
}
heapify(arr, size, i) {
let largest = i;
const left = Math.floor(i * 2 + 1);
const right = Math.floor(i * 2 + 2);
if (left < size && this.comparator(arr[largest], arr[left]))
largest = left;
if (right < size && this.comparator(arr[largest], arr[right]))
largest = right;
if (largest !== i) {
[arr[largest], arr[i]] = [arr[i], arr[largest]];
this.heapify(arr, size, largest);
}
}
}
方法 3:平衡二叉搜索树
思路
滑动窗口的大小是 k,我们要找出 k 个数字中的最大值。
窗口每次滑动时变化的只有头尾两个数字。
基于以上两点,我们可以考虑用一个数据结构来存这 k 个数字,每次窗口滑动时,用 nums[r+1] 替换掉 nums[l],然后再返回 k 个数字中的最大值。